科学家们发现了一种稳定且高导电性的锂离子导体

发布于: 2024-09-28 00:00
阅读: 44
分类: 新闻动态

科学家们发现了一种稳定且高导电性的锂离子导体,可用作固态锂离子电池中的固体电解质。固态锂离子电池使用固体电解质,不易燃,与液体电解质电池相比,具有更高的能量密度和离子迁移数。 这些功能使它们成为传统液体电解质电池主导市场(包括电动汽车)的潜在替代品。 尽管有这些优点,固体电解质仍存在缺点,例如锂离子电导率较低以及难以维持电极与固体电解质之间的充分接触。

虽然硫化物固体电解质具有导电性,但它们会与水分反应形成有毒的二硫化氢。 因此,需要既导电又在空气中稳定的非硫化物固体电解质来制造安全、高性能和快速充电的固态锂离子电池。

确切地说,即使在 –10°C 的温度下,新材料在室温下也具有与传统氧化物基固体电解质相同的电导率。 此外,由于在 100 °C 以上的电导率也已得到验证,因此该固体电解质的工作范围为 –10 °C 至 100 °C。 传统的锂离子电池无法在低于冰点的温度下使用。 因此,常用手机锂离子电池的工作条件为0℃至45℃。

研究了该材料中的锂离子传导机制。 烧绿石型结构的传导路径覆盖了位于 MO6 八面体形成的隧道中的 F 离子。 传导机制是锂离子的顺序运动,同时改变与氟离子的键。 Li离子总是穿过亚稳态位置移动到最近的Li位置。 与 F 离子结合的固定 La3+ 通过阻断传导路径并消除周围的亚稳态位置来抑制锂离子传导。

与现有的锂离子二次电池不同,氧化物基全固态电池不存在因损坏而导致电解液泄漏的风险,也不像硫化物基电池那样产生有毒气体的风险。 因此,这项新的创新预计将引领未来的研究。 “新发现的材料是安全的,并且比之前报道的基于氧化物的固体电解质具有更高的离子电导率。 这种材料的应用有望开发出革命性的电池,这种电池可以在从低到高的宽温度范围内工作,值得注意的是,新材料非常稳定,如果损坏也不会点燃。 它适用于飞机和其他对安全至关重要的地方。 它还适合高容量应用,例如电动汽车,因为它可以在高温下使用并支持快速充电。 此外,它还是一种有前途的用于电池、家用电器和医疗设备小型化的材料。

总之,研究人员不仅发现了一种具有高导电性和空气稳定性的锂离子导体,而且还引入了一种新型的超离子导体–焦绿宝石型氧氟化物。探索锂周围的局部结构、它们在传导过程中的动态变化,以及它们作为全固态电池固态电解质的潜力,是未来研究的重要领域。

 

分享

推荐文章

  • 2025-06-28
    admin
    电解质 电解质在所有电化学设备中都是无处不在且不可或缺的。电解质的作用是作为在正极和负极之间传递电荷的媒介。电解质与其他组件(包括正极、负极和隔膜)紧密接触。界面,主要是电解质与电极之间的界面,通常决定了锂离子电池的性能。因此,电解质必须对正极和负极表面都表现出稳定性。 锂离子电池理想的电解质应满足以下要求:高离子电导率、宽电位范围内的电化学稳定性、化学稳定性、热稳定性、成本效益、简单的制备过程、低毒性和环保性。此外,电解质的电化学工作窗口应被修改以开发高电压正极和低电压负极材料。 鉴于电极-电解质界面对电池性能的重要性,电极/电解质界面,即固体电解质界面(SEI)和正极-电解质界面(CEI),它们分别通过电解质在负极/电解质和正极/电解质界面的电化学分解形成,将首先被简要介绍。 电解质 电解质在所有电化学设备中都是无处不在且不可或缺的。电解质的作用是作为在正极和负极之间传递电荷的媒介。电解质与其他组件(包括正极、负极和隔膜)紧密接触。界面,主要是电解质与电极之间的界面,通常决定了锂离子电池的性能...
  • 2025-06-21
    admin
     锂离子电池的负极材料 提高锂离子电池能量密度的另一个有效方法是寻求高容量负极材料。基于电化学锂化/脱锂机制,锂离子电池中使用的负极大致分为三类:嵌入型负极、合金型负极和转化型负极。 嵌入型负极——碳基材料 碳基材料,包括天然/合成石墨和软/硬碳,由于其成本低、储量丰富、脱锂电位低(相对于Li/Li+)、锂扩散性高、电导率高以及锂化/脱锂过程中体积变化小,成为锂离子电池最可行的候选材料。值得强调的是,碳基负极使锂离子电池在约40年前成为商业可行的产品,而且碳仍然是作为负极材料的最理想选择。例如,传统的石墨负极具有三维结构稳定、能量密度适中、理论质量容量为372mAh/g、理论体积容量为735 mAh/cm3以及低成本的优点。 迄今为止,石墨是商业锂离子电池的主要负极材料。在充电过程中,来自电解质的Li+离子渗透到碳中并形成锂/碳嵌入化合物,即LixC,这是一个可逆反应,每6个碳原子储存1个锂原子。需要注意的是,碳的质量容量比大多数正极材料高,但商业石墨的体积容量仍然较低,范围在330到430 mAh/cm3之间。此外,还开发了...
  • 2025-06-14
    admin
    第二章 危险有害因素辨识 一、锂电池生产安全风险辨识 配料制浆工序 制浆是用专用的溶剂和黏合剂分别与正负极活物质混合,经高速搅均匀后,制成浆状正 混合制浆! 这就星 负极物质的过程。通常情况下,电极都是由活性物质、导电剂、黏结剂和引线组成,有区别的是正负极材料的黏结剂类型不一样,或者负极材料中加入的添加剂不同。制浆工序中存在的危险因素,主要是对黏结剂等原料(如正极材料钴酸锂、导电剂和黏结剂)处理时,如果对烘烤温度、湿度和时间控制不当,就会影响产品的质量,更对锂离子电池的化成工序的安全性能产生影响,是导致后续充电后电池发生爆炸的潜在因素。 此外,在配料过程中,烘干、真空高速分散搅拌,以及危险化学品有机溶剂的使用,如NMP(N-甲基吡咯烷酮)、异丙醇和乙醇等,存在触电、火灾、灼烫及机械伤害等直接危险因素。 涂布烘烤工序 涂膜是将制成的浆料均匀地涂覆于金属箔的表面并烘干,分别制成正负极的极片。其工艺流程一般为放卷、接片、拉片、张力控制、纠编、涂布、干燥、张力控制、自动纠编、收卷等。浆料分别涂在电池的正极与...
  • 0572-630 1196
  • 返回顶部