全固态锂电池的分类和应用
导读:正极材料是决定锂离子电池性能的关键材料之一,也是目前商业化锂离子电池中主要的锂离子来源,其性能和价袼对锂离子电池的影响较大。
正极材料是决定锂离子电池性能的关键材料之一,也是目前商业化锂离子电池中主要的锂离子来源,其性能和价袼对锂离子电池的影响较大。目前研制成功并得到应用的正极材料主要有钴酸锂、磷酸铁锂、锰酸锂、三元材料镍钴锰酸锂(NCM)和镍钴铝酸锂(NCA)等。
钴酸锂(LCO):适合小型电池,实际容量不高
钴酸锂是第一代商业化正极材料,在几十年的发展中逐渐改性和提高,可以认为是最成熟的锂离子电池正极材料。钴酸锂具有放电平台高、比容量较高、循环性能好、合成工艺简单等优点。但该材料含钴较多,成本较高。
钴酸锂仍是小型锂电池的最佳选择。目前在3C电子电池中,大多数仍使用钴酸锂而并非比容量更高的三元材料,原因是钴酸锂材料的压实密度大于三元材料,即单位体积内能容纳的钴酸锂量更多。在更为重视体积密度的小型电池中,钴酸锂占有着一席之地。
钴酸锂理论容量高,但实际容量却只有理论的一半。原因是在充电过程中锂离子要从钴酸锂材料中脱出,但脱出量小于50%时,材料的形态和晶型可以保持稳定。随着锂离子脱出量增大至50%时,钴酸锂材料将发生相变,如果此时继续充电,钴将溶解在电解液中并产生氧气,严重影响电池循环稳定性和安全性能,因此一般的钴酸锂充电截止电压为4.2V。
磷酸铁锂(LFP):能量密度低,安全性突出
磷酸铁锂是目前广受关注的正极材料之一,理论比容量为170mAh/g,实际比容量可达150mAh/g以上。其主要特点是成本低廉,安全性非常好,循环寿命高,这些特点使得磷酸铁锂材料迅速成为研究热点,磷酸铁锂电池也在电动汽车领域有了广泛的应用。
磷酸铁锂的缺点也较为明显,即能量密度低。原因有两点:
一是磷酸铁锂材料的电压仅有3.3V左右,低于其他正极材料,这使得磷酸铁锂电池储存能量较低;二是磷酸铁锂导电性较差,需要纳米化并进行包覆才能获得良好的电化学性能,这使得材料变得蓬松,压实密度较低。两者综合作用,使得磷酸铁锂电池的能量密度低于钴酸锂和三元电池。因此磷酸铁锂电池主要应用于电动大巴车及少量乘用车中。
磷酸铁是否近期将被淘汰?近期新能源汽车安全事故频发,被认为将很快被三元材料取代的磷酸铁锂再次进入人们的视野,人们希望通过对磷酸铁锂进行改性提高其容量。目前已有学者通过在磷酸铁锂中掺入Mn元素使其拥有更高的电压和更高的能量密度,也有相关研究通过复合技术将磷酸铁锂与NCM三元材料进行混合,在保持三元素电池较高能量密度的同时可以有效提升其安全性能。
三元材料(NCM、NCA):性能可调控,道路如何抉择?
三元材料是与钴酸锂结构极为相似的锂镍钴锰氧化物(LiNixCoyMn1-x-yO₂)的俗称,这种材料在比能量、循环性、安全性和成本方面可以进行均衡和调控。镍钴锰三种元素的不同配置将为材料带来不同的性能:镍含量增加将增加材料的容量,但会使循环性能变差;钴的存在可使材料结构更加稳定,但含量过高会使容量降低;锰的存在可以降低成本并改善安全性能,但含量过高则会破坏材料的层状结构,因此找到三种材料的比例关系以达到综合性能最优化,是三元材料研发的重点。常见配比有NCM111、523、622、811等。NCA则是将其中的锰元素用铝元素来替代,一定程度上改善材料的结构稳定性,但其铝含量较少,可近似看成是一种二元材料。
镍含量升高对材料性质产生了怎样的变化?
(1)镍含量越高,材料比容量越高。NCM811材料比容量可达210mAh/g,比NCMIII材料增加近25%。
(2)镍含量越高,材料储存和开发难度越大。高镍三元材料极易吸水变质,降低容量和循环寿命。而且一部分水还会保存在晶体中,使得电池在高温环境中产生气体,造成电池胀气,带来安全隐患。
(3)镍含量越高,三元材料热稳定性越差。如NCM111材料在300C左右发生分解,而NCM811在220℃左右即分解。
(4)镍含量升高会带来电解液匹配问题。高镍材料表面由于吸水变质产生的LiOH等物质会与电解液反应,造成容量衰减和安全问题。因此对高镍材料的改性技术是重要的发展方向。改性技术包括掺杂其他元素、表面包覆等,如用导电高分子或者无机材料在颗粒表面进行纳米包覆,可提高循环使用寿命,提高高温性能和安全性。
未来路线是NCM811还是NCA?二者均为高镍三元材料,性能比较接近,但存在以下几点不同:
(1)NCM811中钴含量为0.1,NCA中钴含量为0.15,这使得受钴高昂价袼的影响,NCA原料成本稍高;
(2)以铝代替锰,可以增强材料的稳定性,提高材料的循环性能,但是在制作过程中,由于铝为两性金属,不易沉淀,因此NCA材料制作工艺上存在比NCM811更高的壁垒;
(3)电池制造上,NCA对湿度等条件要求更加苛刻,电池生产存在技术门槛。
在目前看来,两种思路都是可行的,未来哪种材料的技术难关率先被克服而实现大规模量产,哪种材料便能率先占领市场。
推荐文章
-
第二章 危险有害因素辨识 一、锂电池生产安全风险辨识 配料制浆工序 制浆是用专用的溶剂和黏合剂分别与正负极活物质混合,经高速搅均匀后,制成浆状正 混合制浆! 这就星 负极物质的过程。通常情况下,电极都是由活性物质、导电剂、黏结剂和引线组成,有区别的是正负极材料的黏结剂类型不一样,或者负极材料中加入的添加剂不同。制浆工序中存在的危险因素,主要是对黏结剂等原料(如正极材料钴酸锂、导电剂和黏结剂)处理时,如果对烘烤温度、湿度和时间控制不当,就会影响产品的质量,更对锂离子电池的化成工序的安全性能产生影响,是导致后续充电后电池发生爆炸的潜在因素。 此外,在配料过程中,烘干、真空高速分散搅拌,以及危险化学品有机溶剂的使用,如NMP(N-甲基吡咯烷酮)、异丙醇和乙醇等,存在触电、火灾、灼烫及机械伤害等直接危险因素。 涂布烘烤工序 涂膜是将制成的浆料均匀地涂覆于金属箔的表面并烘干,分别制成正负极的极片。其工艺流程一般为放卷、接片、拉片、张力控制、纠编、涂布、干燥、张力控制、自动纠编、收卷等。浆料分别涂在电池的正极与...
-
强强联合,共筑智能制造新平台!!! 在湖州市长兴县经济开发区副书记、画溪街道党工委书记李志云先生等相关领导的共同见证与推动下,中俄研究院与中国塑料橡胶机械制造领域的领军企业——大橡塑公司战略合作迎来里程碑时刻——双方共建的大橡塑“(湖州)运维中心” 项目签约暨揭牌仪式于近日隆重举行! 拥抱机遇,共绘监图 大橡塑公司董事长王元江先生在签约仪式上展望: 一、"融人长兴:拥抱机遇,共绘监图"。 长兴不仅是长三角的产业高地,更是新能源发展的先锋阵地。县委县政府以开放包容的营商环境、务实高效的政务作风,为企业提供了落地生根的沃土。我们深切感受到长兴推动新能源及智能制造产业升级的决心-这与大大橡溯“以技术创新赋能产业未来”的使命高度契合。选择长兴,就是选择与时代同行、与未来共赢! 二、强强联合:三方协同,优势裂变 本次合作,是“政、产、研”黄金三角的典范之作: 长兴政府搭建了广阔的应用舞台和政策引擎; 中俄研...
-
第一章 锂电池基础知识 一、基本概念 ❖ 1、锂离子蓄电池(单体电池):含有锂离子的能够直接将化学能转化为电能且 装置。该装置包括电极、隔膜、电解质、容器和端子等,并被设计成可充电的电池称为锂离子蓄电池。 2 蓄电池组(电池组):由任意数量的锂离子电池组合而成且准备使用的组合体。该组合体包括适当的封装材料、连接器,也可能含有电子控制装置。 3 搅拌:是指将活性物质、粘结剂、导电剂、溶剂等通过混合、分散而配置成均匀的浆料过程。 4 负极涂膜:将浆料均匀涂抹在基材上,通过烘箱将基材烘干,同时将烘箱内的蒸汽通过回收系统进行回收。 5 注液:完成电解液注入锂离子电池电芯的过程,注液方式包括人工注液和自动化注液。 6 化成:激活电池活性物质,在电池表面形成致密稳定的SEI膜电化学过程,通常指首次对电池充电的过程。 7 老化(静置):将化成后的电池在一定的环境(温度、气压)条件下存放一段时间,以筛选出劣质产品的过程。通常分为常温静置和高温静置。 8 成品电池:经检验合格并已包装入库的产品,或虽未入库,但已办理入库手续的锂离子电池产品。...