全固态锂电池的分类和应用
导读:正极材料是决定锂离子电池性能的关键材料之一,也是目前商业化锂离子电池中主要的锂离子来源,其性能和价袼对锂离子电池的影响较大。
正极材料是决定锂离子电池性能的关键材料之一,也是目前商业化锂离子电池中主要的锂离子来源,其性能和价袼对锂离子电池的影响较大。目前研制成功并得到应用的正极材料主要有钴酸锂、磷酸铁锂、锰酸锂、三元材料镍钴锰酸锂(NCM)和镍钴铝酸锂(NCA)等。
钴酸锂(LCO):适合小型电池,实际容量不高
钴酸锂是第一代商业化正极材料,在几十年的发展中逐渐改性和提高,可以认为是最成熟的锂离子电池正极材料。钴酸锂具有放电平台高、比容量较高、循环性能好、合成工艺简单等优点。但该材料含钴较多,成本较高。
钴酸锂仍是小型锂电池的最佳选择。目前在3C电子电池中,大多数仍使用钴酸锂而并非比容量更高的三元材料,原因是钴酸锂材料的压实密度大于三元材料,即单位体积内能容纳的钴酸锂量更多。在更为重视体积密度的小型电池中,钴酸锂占有着一席之地。
钴酸锂理论容量高,但实际容量却只有理论的一半。原因是在充电过程中锂离子要从钴酸锂材料中脱出,但脱出量小于50%时,材料的形态和晶型可以保持稳定。随着锂离子脱出量增大至50%时,钴酸锂材料将发生相变,如果此时继续充电,钴将溶解在电解液中并产生氧气,严重影响电池循环稳定性和安全性能,因此一般的钴酸锂充电截止电压为4.2V。
磷酸铁锂(LFP):能量密度低,安全性突出
磷酸铁锂是目前广受关注的正极材料之一,理论比容量为170mAh/g,实际比容量可达150mAh/g以上。其主要特点是成本低廉,安全性非常好,循环寿命高,这些特点使得磷酸铁锂材料迅速成为研究热点,磷酸铁锂电池也在电动汽车领域有了广泛的应用。
磷酸铁锂的缺点也较为明显,即能量密度低。原因有两点:
一是磷酸铁锂材料的电压仅有3.3V左右,低于其他正极材料,这使得磷酸铁锂电池储存能量较低;二是磷酸铁锂导电性较差,需要纳米化并进行包覆才能获得良好的电化学性能,这使得材料变得蓬松,压实密度较低。两者综合作用,使得磷酸铁锂电池的能量密度低于钴酸锂和三元电池。因此磷酸铁锂电池主要应用于电动大巴车及少量乘用车中。
磷酸铁是否近期将被淘汰?近期新能源汽车安全事故频发,被认为将很快被三元材料取代的磷酸铁锂再次进入人们的视野,人们希望通过对磷酸铁锂进行改性提高其容量。目前已有学者通过在磷酸铁锂中掺入Mn元素使其拥有更高的电压和更高的能量密度,也有相关研究通过复合技术将磷酸铁锂与NCM三元材料进行混合,在保持三元素电池较高能量密度的同时可以有效提升其安全性能。
三元材料(NCM、NCA):性能可调控,道路如何抉择?
三元材料是与钴酸锂结构极为相似的锂镍钴锰氧化物(LiNixCoyMn1-x-yO₂)的俗称,这种材料在比能量、循环性、安全性和成本方面可以进行均衡和调控。镍钴锰三种元素的不同配置将为材料带来不同的性能:镍含量增加将增加材料的容量,但会使循环性能变差;钴的存在可使材料结构更加稳定,但含量过高会使容量降低;锰的存在可以降低成本并改善安全性能,但含量过高则会破坏材料的层状结构,因此找到三种材料的比例关系以达到综合性能最优化,是三元材料研发的重点。常见配比有NCM111、523、622、811等。NCA则是将其中的锰元素用铝元素来替代,一定程度上改善材料的结构稳定性,但其铝含量较少,可近似看成是一种二元材料。
镍含量升高对材料性质产生了怎样的变化?
(1)镍含量越高,材料比容量越高。NCM811材料比容量可达210mAh/g,比NCMIII材料增加近25%。
(2)镍含量越高,材料储存和开发难度越大。高镍三元材料极易吸水变质,降低容量和循环寿命。而且一部分水还会保存在晶体中,使得电池在高温环境中产生气体,造成电池胀气,带来安全隐患。
(3)镍含量越高,三元材料热稳定性越差。如NCM111材料在300C左右发生分解,而NCM811在220℃左右即分解。
(4)镍含量升高会带来电解液匹配问题。高镍材料表面由于吸水变质产生的LiOH等物质会与电解液反应,造成容量衰减和安全问题。因此对高镍材料的改性技术是重要的发展方向。改性技术包括掺杂其他元素、表面包覆等,如用导电高分子或者无机材料在颗粒表面进行纳米包覆,可提高循环使用寿命,提高高温性能和安全性。
未来路线是NCM811还是NCA?二者均为高镍三元材料,性能比较接近,但存在以下几点不同:
(1)NCM811中钴含量为0.1,NCA中钴含量为0.15,这使得受钴高昂价袼的影响,NCA原料成本稍高;
(2)以铝代替锰,可以增强材料的稳定性,提高材料的循环性能,但是在制作过程中,由于铝为两性金属,不易沉淀,因此NCA材料制作工艺上存在比NCM811更高的壁垒;
(3)电池制造上,NCA对湿度等条件要求更加苛刻,电池生产存在技术门槛。
在目前看来,两种思路都是可行的,未来哪种材料的技术难关率先被克服而实现大规模量产,哪种材料便能率先占领市场。
推荐文章
-
一. 提高容量与功率密度 未来锂离子电池技术的发展方向之一是提高容量与功率密度。提高容量与功率密度意味着电池能够存储更多的能量,从而延长设备的续航时间或车辆的行驶里程,适用于电动汽车、电网储能等领域。 为了实现这一目标,科研人员正在探索新的电极材料、电解质和结构设计。目前,各大科研机构和高新企业正积极研发新型电极材料,针对电极材料、氟化合物等高容量材料的研究和应用有望提高锂电池的容量与功率密度。 二.降低锂离子电池的成本 另一个重要的发展方向是降低锂离子电池的成本。目前,锂离子电池的高成本是制约其广泛应用的因素之一。为了降低成本,科研人员正在努力降低原材料成本、提高生产效率,并开发更加经济的生产工艺。方法之一就是采用干法工艺。这种工艺不用涂布法制作电极(将活性物质和导电剂分散到溶解有粘合剂的溶剂中制成油墨(浆液),再将油墨涂在金属箔集流体上,干燥后进行辊压制成电极),也不使用水和有机溶剂等液体,只利用活性物质、导电剂和粘结剂这类粉体混合制作出电极的混合粉末,再利用某种方法形成薄片来制作电极。因此,...
-
1、电压(V) ①开路电压:指电池在没有连接外电路或者外负载时的电压。开路电压与电池的剩余能量有一定的联系,电量显示就是利用这个原理。 ②工作电压:是指电池在工作状态下即电路中有电流流过时电池正负极之间的电势差,又称负载电压。在电池放电工作状态下,当电流流过电池内部时,必须克服内阻的阻力,故工作电压总是低于开路电压。 ③放电截止电压:指电池充满电后进行放电,放完电时达到的电压(若继续放电则为过度放电,对电池的寿命和性能有损伤)。 ④充电限制电压:充电过程中由恒流变为恒压充电的电压。 电池充放电电压变化曲线 2、电池容量(Ah) ①定义:电池容量是指电池所能够储存的电量多少,容量是电池电性能的重要指标,它由电极的活性物质决定。 ②单位:容量用C表示,单位用Ah(安时)或mAh(毫安时)表示。 ③公式:C=It,即电池容量(Ah)=电流(A)x放电时间(h)。 ④举例:容量为10安时的电池,以5安培放电可放2小时,以10安培放电可放1小时。 ⑤影响因素:电池的实际容量主要取决于以下几个因素:活性物质的数量、质量,活...
-
一、引言 电芯容量差异是电池组性能退化和安全隐患的核心因素,其产生原因涉及多个维度。本文系统分析了制造工艺、材料与设计、使用与老化以及环境与外部等因素对锂电池电芯容量差异的影响,旨在为改善电芯容量一致性提供参考。 一、制造工艺因素 (一)涂布与辊压工艺偏差 1. 涂布不均匀 正负极活性材料涂布厚度或密度差异,直接影响电极有效反应面积和锂离子嵌入量,导致单体容量差异。在涂布过程中,由于设备精度、浆料流动性等因素的影响,可能会出现涂布厚度不一致的情况。例如,涂布厚度过厚的区域,锂离子嵌入和脱出的路径变长,反应速率降低,从而影响电芯的容量;涂布厚度过薄的区域,电极的有效反应面积减小,同样会导致容量下降。 2. 辊压压实度波动 过度压实可能破坏电极材料结构,如石墨层断裂,降低锂离子扩散效率;压实不足则减少单位体积活性物质含量。辊压过程中,压实度的波动会影响电极的孔隙率和内阻。当压实度过高时,电极材料的孔隙率减小,锂离子扩散通道受阻,导致容量下降;当压实度过低时,单位体积内的活性物质含量减少,电芯的容量也会受到...