什么是甲醇

发布于: 2025-04-12 10:27
阅读: 93
分类: 新闻动态

 甲醇(Methanol)又称羟基甲烷、木醇(wood alcohol)或木精(wood spirits),是一种有机化合物,是结构最为简单的饱和一元醇,其化学式为CH3OH/CH4O。分子量为32.04,沸点为64.7℃。甲醇有“木醇”与“木精”之名,源自于曾经其主要的生产方式是自木醋液(为木材干馏或裂解的产物之一)萃取。现代甲醇是直接从一氧化碳,二氧化碳和氢的一个催化作用的工业过程中制造。甲醇很轻、挥发性强、无色、易燃,并有与乙醇(饮用酒)非常相似的气味。但不同于乙醇,甲醇毒性大,不可以饮用。通常用作溶剂、防冻剂、燃料或乙醇变性剂,亦可用于经过酯交换反应生产生物柴油。

 

古埃及人在遗体保存技术防腐的过程中,使用了包括甲醇的混合物质以保存尸体。然而,直到1661年,罗伯特·波义耳才首次分离出纯的甲醇,方法是蒸馏黄杨(黄杨木)。它后来被称为“pyroxylic spirit”。1834年,法国化学家让-巴蒂斯特·杜马和尤金·皮里哥确定了它的元素组成。在2006年,天文学家利用射电望远镜在焦德雷尔班克天文台的MERLIN阵列发现了太空中一个2.88亿英里宽的巨大甲醇云。

 

物理性质

1.性状:无色透明液体,有刺激性气味。

2.熔点(℃):-97.8

3.沸点(℃):64.7

4.相对密度(水=1):0.792

5.相对蒸气密度(空气=1):1.1

6.饱和蒸气压(kPa):12.3(20℃)

7.燃烧热(kJ/mol):-723

8.临界温度(℃):240

9.临界压力(MPa):7.95

10.辛醇/水分配系数:-0.82~-0.77

11.闪点(℃):12(CC);12.2(OC)

12.引燃温度(℃):464

13.爆炸上限(%):36.5

14.爆炸下限(%):6

15.溶解性:溶于水,可混溶与醇类、乙醚等多数有机溶剂。

16.折射率(n20ºC):1.3284

17.黏度(mPa·s,15ºC):0.6405

(mPa·s,20ºC):0.5945

(mPa·s,25ºC):0.5525

(mPa·s,30ºC):0.5142

18.闪点(ºC,开口):11[y1]

22.闪点(ºC,闭口):12.0

23.蒸发热(KJ/mol,b.p.):35.32

24.熔化热(KJ/kg):98.81

25.生成热(KJ/mol,气体):-201.39

26.生成热(KJ/mol,液体):-238.82

27.比热容(KJ/(kg·K),20ºC,定压):2.51

28.沸点上升常数:0.785

29.电导率(S/m,25ºC):1.5×10-9

30.热导率:0.0144(W/(m·K),0ºC),0.0222(W/(m·K),100ºC) [9]

31.体膨胀系数(K-1,20ºC):0.00119

32.体膨胀系数(K-1,55ºC):0.00124

33.相对密度(25℃,4℃):1.7866

34.相对密度(25℃,4℃):1.3265

35.临界密度(g·cm-3):0.273

36.临界体积(cm3·mol-1):117

37.临界压缩因子:0.223

38.偏心因子:0.566

39.Lennard-Jones参数(A):3.8632

40.Lennard-Jones参数(K):419.86

41.溶度参数(J·cm-3)0.5:29.532

42.van der Waals面积(cm2·mol-1):3.580×109

43.van der Waals体积(cm3·mol-1):21.710

44.气相标准燃烧热(焓)(kJ·mol-1):764.9

45.气相标准声称热(焓)( kJ·mol-1) :-201.5

46.气相标准熵(J·mol-1·K-1) :239.88

47.气相标准生成自由能( kJ·mol-1):-161.6

48.气相标准热熔(J·mol-1·K-1):44.06

49.液相标准燃烧热(焓)(kJ·mol-1):-726.9

50.液相标准声称热(焓)( kJ·mol-1):-239.1

51.液相标准熵(J·mol-1·K-1) :127.24

52.液相标准生成自由能( kJ·mol-1):-166.88

53.液相标准热熔(J·mol-1·K-1):81.4

化学性质

甲醇由甲基和羟基组成的,具有醇所具有的化学性质。

甲醇可以与氟气、氧气等气体发生反应,在纯氧中剧烈燃烧,生成水蒸气和二氧化碳

2CH3OH+3O2=2CO2+4H2O

而且,甲醇还可以发生氨化反应(370℃~420℃)

NH3+CH3OH→CH3NH2+H2O

NH3+2CH3OH→(CH3)2NH+2H2O

NH3+3CH3OH→(CH3)3N+3H2O

甲醇也可在空气中燃烧:

 

甲醇具有饱和一元醇的通性,由于只有一个碳原子,因此有其特有的反应。例如:

① 与氯化钙形成结晶状物质CaCl2·4CH3OH,与氧化钡形成BaO·2CH3OH的分子化合物并溶解于甲醇中;类似的化合物有MgCl2·6CH3OH、CuSO4·2CH3OH、CH3OK·CH3OH、AlCl3·4CH3OH、AlCl3·6CH3OH、AlCl3·10CH3OH等

4CH3OH+CaCl2→CaCl2·4CH3OH

2CH3OH+BaO→2CH3OH·BaO

② 与其他醇不同,由于-CH2OH基与氢结合,氧化时生成的甲酸进一步氧化为CO2

2CH3OH+O2→2HCHO+2H2O

2HCHO+O2→2HCOOH

2HCOOH+O2→2H2O+2CO2

③ 甲醇与氯、溴不易发生反应,但易与其水溶液作用,最初生成二氯甲醚(CH2Cl)2O,因水的作用转变成HCHO与HCl

2CH3OH+2Cl2=(CH2Cl)2O+H2O+2HCl

(CH2Cl)2O+H2O=2HCHO+2HCl

④ 与碱、石灰一起加热,产生氢气并生成甲酸钠

CH3OH+NaOH→HCOONa+2H2

⑤ 与锌粉一起蒸馏,发生分解,生成CO和H2O 

分子结构数据

1.摩尔折射率:8.21

2.摩尔体积(cm3/mol):42.5

3.等张比容(90.2K):88.6

4.表面张力(dyne/cm):18.8

5.极化率(10-24cm3):3.25

计算化学数据

1.疏水参数计算参考值(XlogP):-0.5

2.氢键供体数量:1

3.氢键受体数量:1

4.可旋转化学键数量:0

5.互变异构体数量:无

6.拓扑分子极性表面积20.2

7.重原子数量:2

8.表面电荷:0

9.复杂度:2

10.同位素原子数量:0

11.确定原子立构中心数量:0

12.不确定原子立构中心数量:0

13.确定化学键立构中心数量:0

14.不确定化学键立构中心数量:0

15.共价键单元数量:1 

用途

1.基本有机原料之一,用于制造氯甲烷、甲胺和硫酸二甲酯等多种有机产品。也是农药(杀虫剂、杀螨剂)、医药(磺胺类、合霉素等)的原料,合成对苯二甲酸二甲酯、甲基丙烯酸甲酯和丙烯酸甲酯的原料之一。 [4]

2.甲醇的主要应用领域是生产甲醛,甲醛可用来生产胶粘剂,主要用于木材加工业,其次是用作模塑料、涂料、纺织物及纸张等的处理剂。

3.甲醇另一主要用途是生产醋酸。醋酸消费约占全球甲醇需求的7%,可生产醋酸乙烯、醋酸纤维和醋酸酯等,其需求与涂料、粘合剂和纺织等方面的需求密切相关。

4.甲醇可用于制造甲酸甲酯,甲酸甲酯可用于生产甲酸、甲酰胺和其他精细化工产品,还可用作杀虫剂、杀菌剂、熏蒸剂、烟草处理剂和汽油添加剂。

5.甲醇也可制造甲胺,甲胺是一种重要的脂肪胺,以液氮和甲醇为原料,可通过加工分立为一甲胺、二甲胺、三甲胺,是基本的化工原料之一。

6.甲醇可合成为碳酸二甲酯,是一种环保产品,应用于医药、农业和特种行业等。

7.甲醇可合成为乙二醇,是石化中间原料之一,可用于生产聚酯和防冻剂。

8.甲醇可用于制造生长促进剂。可以使作物大量增产,保持枝叶鲜嫩、茁壮茂盛、在夏天也不会枯萎,可大量减少灌溉用水,有利于旱地作物的生长。

9.甲醇可合成甲醇蛋白,以甲醇为原料经微生物发酵生产的甲醇蛋白被称为第二代单细胞蛋白,与天然蛋白相比,营养价值更高,粗蛋白含量比鱼粉和大豆高得多,而且含有丰富的氨基酸、矿物质和维生素,可以代替鱼粉、大豆、骨粉、肉类和脱脂奶粉。 [5]

10.甲醇用作清洗去油剂,MOS级主要用于分立器件,中、大规模集成电路,BV-Ⅲ级主要用于超大规模集成电路工艺技术。

11.用作分析试剂,如作溶剂、甲基化试剂、色谱分析试剂。还用于有机合成。

12.通常甲醇是一种比乙醇更好的溶剂,可以溶解许多无机盐。亦可掺入汽油作替代燃料使用。20世纪80年代以来,甲醇用于生产汽油辛烷值添加剂甲基叔丁基醚、甲醇汽油、甲醇燃料,以及甲醇蛋白等产品,促进了甲醇生产的发展和市场需要。

13.甲醇不仅是重要的化工原料,而且还是性能优良的能源和车用燃料。甲醇与异丁烯反应得到MTBE(甲基叔丁基醚),它是高辛烷值无铅汽油添加剂,亦可用作溶剂。除此之外,还可制烯烃和丙烯,解决资源短缺问题。

14.甲醇可用于生产二甲醚,二甲醚除了在日用化工、制药、农药、染料、涂料等方面有广泛的用途,还具有方便清洁、十六烷值高、动力性能好、污染少。易加压为液体、易储存等燃料性能。甲醇和二甲醚按一定比例配制而成的新型液体燃料称为醇醚燃料。它的燃烧效率和热效率均高于液化气。 

分享

推荐文章

  • 2025-07-05
    admin
    一、为什么锂离子电池充电截止电压是4.2V 根据下图所示的电池循环寿命和充电截止电压的关系可知,在电池使用初期的循环周期内,若充电截止电压略高于正常水平,虽能在单个周期内获得更高的电量输出,但这种优势仅能维持较短时间。而当电池的充电截止电压比推荐的最高值 4.2V 还要高出 50mV 甚至 100mV 时,由于每个循环周期都存在轻微的过度充电情况,会致使电池老化速度显著加快。一言以蔽之,当电池的充电截止电压超过 4.2V 时,超出的电压越高,电池的循环寿命就越短,并且电池容量下降的速度也会越快。 锂离子电池循环寿命和电池充电截止电压的关系 二、锂离子电池放电曲线 通过观察锂离子电池在不同放电电流下的放电曲线能够清晰发现:随着放电电流逐步增大,电池容量的衰减速度明显加快,这就导致最终能够释放出的容量大幅降低,使得电池的标称容量难以得到充分利用。进一步探究原因可知,当电池容量处于较低水平时,其内阻会出现较大幅度的增加,而倘若此时采用较大的电流进行放电操作,电池内阻的增长速度将会进一步加剧,形成恶性循环,严重影响电池性能...
  • 2025-06-28
    admin
    电解质 电解质在所有电化学设备中都是无处不在且不可或缺的。电解质的作用是作为在正极和负极之间传递电荷的媒介。电解质与其他组件(包括正极、负极和隔膜)紧密接触。界面,主要是电解质与电极之间的界面,通常决定了锂离子电池的性能。因此,电解质必须对正极和负极表面都表现出稳定性。 锂离子电池理想的电解质应满足以下要求:高离子电导率、宽电位范围内的电化学稳定性、化学稳定性、热稳定性、成本效益、简单的制备过程、低毒性和环保性。此外,电解质的电化学工作窗口应被修改以开发高电压正极和低电压负极材料。 鉴于电极-电解质界面对电池性能的重要性,电极/电解质界面,即固体电解质界面(SEI)和正极-电解质界面(CEI),它们分别通过电解质在负极/电解质和正极/电解质界面的电化学分解形成,将首先被简要介绍。 电解质 电解质在所有电化学设备中都是无处不在且不可或缺的。电解质的作用是作为在正极和负极之间传递电荷的媒介。电解质与其他组件(包括正极、负极和隔膜)紧密接触。界面,主要是电解质与电极之间的界面,通常决定了锂离子电池的性能...
  • 2025-06-21
    admin
     锂离子电池的负极材料 提高锂离子电池能量密度的另一个有效方法是寻求高容量负极材料。基于电化学锂化/脱锂机制,锂离子电池中使用的负极大致分为三类:嵌入型负极、合金型负极和转化型负极。 嵌入型负极——碳基材料 碳基材料,包括天然/合成石墨和软/硬碳,由于其成本低、储量丰富、脱锂电位低(相对于Li/Li+)、锂扩散性高、电导率高以及锂化/脱锂过程中体积变化小,成为锂离子电池最可行的候选材料。值得强调的是,碳基负极使锂离子电池在约40年前成为商业可行的产品,而且碳仍然是作为负极材料的最理想选择。例如,传统的石墨负极具有三维结构稳定、能量密度适中、理论质量容量为372mAh/g、理论体积容量为735 mAh/cm3以及低成本的优点。 迄今为止,石墨是商业锂离子电池的主要负极材料。在充电过程中,来自电解质的Li+离子渗透到碳中并形成锂/碳嵌入化合物,即LixC,这是一个可逆反应,每6个碳原子储存1个锂原子。需要注意的是,碳的质量容量比大多数正极材料高,但商业石墨的体积容量仍然较低,范围在330到430 mAh/cm3之间。此外,还开发了...
  • 0572-630 1196
  • 返回顶部